|
Великие математикиВеликие математики
Рене Декарт (1596 - 1650) – математик (основатель аналитической геометрии), физик, философ.
Родился Рене Декарт 31 марта 1596 года в французском городе Лаэ в семье с дворянскими корнями. В своей биографии Рене Декарт после смерти матери воспитывался бабушкой. Учился в колледже Ла Флеш, где получал религиозное образование. В 1618 году начал изучать юридические вопросы, также занимаясь математикой. В 1617 году поступил в голландскую армию. Вместе с немецкой армией выступал в битве за Прагу. После возвращение во Францию в биографии Декарта снова последовал переезд. Из-за обвинений в ереси он решил обосноваться в Голландии. В те времена много времени уделяет науке. В 1637 году был напечатан труд Декарта «Рассуждение о методе». Вслед за ним в биографии Р. Декарта вышли: «Размышления о первой философии», «Начала философии». Многие годы биографии математика Декарта его труды не признавались. Вскоре после переезда в 1649 году в Стокгольм Декарт скончался. Основные математические труды Декарта – «Рассуждение о методе» (в книге изложены вопросы аналитической геометрии), приложения к книге. Также ученый рассматривал символику Виета, многочлены, решения алгебраических уравнений, комплексные числа (их математик называл «ложными»). Кроме того в своей биографии Рене Декарт изучал механику, оптику, рефлекторную деятельность человека. Исаак Ньютон (1642 - 1727) – великий ученый, сделавший большой вклад в развитие физики, математики, астрологии. Родился в местечке Вулсторп Англии.
После школы образование в биографии Ньютона было получено в колледже святой Троицы при Кембриджском университете. Под влиянием физиков, Ньютон еще в студенчестве сделал несколько открытий, в большей степени математических. В период с 1664 по 1666 год он вывел формулу бинома Ньютона, формулу Ньютона –Лейбница, вывел закон всемирного тяготения. В 1668 году в биографии Исаака Ньютона получена степень магистра, в 1669 – профессора математических наук. Благодаря созданному Ньютоном телескопу (рефлектору) были сделаны значительные открытия в астрономии. Ученый был членом Королевского двора (с 1703 - президент), смотрителем Монетного. Законы Ньютона являют собой основы классической механики. Первый закон Ньютона объясняет сохранение скорости тела при скомпенсированных внешних воздействиях. Второй закон Ньютона описывает зависимость ускорения тела от приложенной силы. Из 3х законов Ньютона могут быть выведены другие законы механики. Любовь Ньютона к математике обусловила величайших ряд его открытий в данной науке. Так он описал интегральное, дифференциальное исчисление, метод разностей, метод поиска корней уравнения (метод Ньютона). ГОТФРИД ВИЛЬГЕЛЬМ ЛЕЙБНИЦ (1646-1716)
Математика не была его единственной страстью. С юных лет ему хотелось познать природу в целом, и математика должна была стать решающим средством в этом познании. Он был философом и лингвистом, историком и биологом, дипломатом и политическим деятелем, математиком и изобретателем. Научные и общественные планы Лейбница были грандиозны. Он мечтал о создании всемирной академии наук, о построении «универсальной науки». Он хотел выделить простейшие понятия, из которых по определенным правилам можно сформировать все сколь угодно сложные понятия. Лейбниц мечтал об универсальном языке, позволяющем записывать любые мысли в виде математических формул, причем логические ошибки должны проявляться в виде математических ошибок. Он думал о машине, которая выводит теоремы из аксиом, о превращении логических утверждений в арифметические (эта идея была воплощена в жизнь в нашем веке). Но грандиозность замыслов уживалась у Лейбница с пониманием того, что может быть непосредственно осуществлено. Он не может организовать всемирную академию, но в 1700г. организует академию в Берлине, рекомендует Петру I организовать академию в России. При организации Петербургской Академии наук в 1725 г. пользовались планами Лейбница. Он прекрасно умеет решать конкретные задачи и в математике: создает новый тип арифмометра, который не только складывает и вычитает числа, но и умножает, делит, возводит в степень и извлекает квадратные и кубические корни, решает трудные геометрические задачи. Вводит понятие определителя и закладывает основы теории определителей. И все же Лейбниц всегда стремился рассмотреть любой вопрос под самым общим углом зрения. Скажем, X. Гюйгенс замечает сохранение энергии на примере некоторых механических задач, а Лейбниц пытается преобразовать это утверждение во всеобщий закон природы, он рассматривает Вселенную в целом как вечный двигатель (предварительная формулировка закона сохранения энергии!). Но особенно ярко проявились эти качества Лейбница, когда он, узнав о разнообразных математических и механических задачах, решенных Гюйгенсом, по совету последнего знакомится с работой Б. Паскаля о циклоиде. Он начинает понимать, что в решении этих разных задач спрятан общий, универсальный метод решения широкого круга задач и что Паскаль остановился перед решающим шагом, «будто на его глазах была пелена». Лейбниц создает дифференциальное и интегральное исчисления, которые в другом варианте были построены, но не опубликованы И. Ньютоном. Ученый, занимавшийся разработкой универсального языка, понимает, какую роль в новом исчислении должна играть символика (см. Знаки математические). Без символики (которая сохранилась до наших дней в форме, предложенной Лейбницем) метод математического анализа не вышел бы за пределы узкого круга избранных (как это было с алгеброй до символики Виета- Декарта). Кстати, Лейбниц предложил несколько других математических знаков, например = (равенство), • (умножение). В отличие от Ньютона Лейбниц потратил много сил на передачу своего метода другим математикам, среди которых выделялись братья Якоб и Иоганн Бернулли. По его инициативе создается журнал, в котором группа математиков оттачивает методы нового математического анализа. Смысл своей жизни Лейбниц видел в познании природы, в создании идей, помогающих раскрыть ее законы. Пифагор (570 – 490 года до н.э.) – древнегреческий математик, философ. Родился Пифагор в Сидоне Финикийском.
Факты биографии Пифагора не известны достоверно. О его жизненном пути можно судить лишь из произведений других древнегреческих философов. По их мнению, математик Пифагор общался с известнейшими мудрецами, учеными того времени. Известно, что долгое время Пифагор пробыл в Египте, изучая местные таинства. Затем в биографии философа Пифагора произошла поездка в Вавилон. Лишь после этого он вернулся на Самос. В то время там правил Поликрат, из-за тиранической власти которого Пифагор вынужден был покинуть Самос. Пифагор обосновался на юге Италии. Философия Пифагора, его образ жизни привлекли многих последователей. Сплотившись, они создали орден, добившийся большой власти в Кортоне. Однако позже самому Пифагору пришлось уехать в Метапонт, поскольку наряду с последователями, у философа и ученого было много противников. Как математик Пифагор достиг больших успехов. Ему приписывают открытие и доказательство теоремы Пифагора, создание таблицы Пифагора. Известно, что члены его ордена занимались космологией, верили в переселение душ. Философское учение Пифагора можно разделить на две части – научную и религиозную. Архимед (287 до н.э. – 212 до н.э.) – древнегреческий физик, математик, механик.
Биография Архимеда достоверно не изучена, поскольку точных фактов не сохранилось. О жизни Архимеда можно судить по его работам, а также по описанию других древнегреческих деятелей. Родился Архимед на острове Сицилия в семье математика, так что ему еще с детства прививали любовь к точным наукам. Для продолжения своего обучения Архимед отправился в научный центр – Александрию, где не только читал рукописи, а еще общался, обучался у великих ученых того времени. После возвращения в Сиракузы началась плодотворная работа. Так, например, Архимед обосновал закон гидростатики (закон Архимеда). Инженерные способности были проявлены в биографии Архимеда во время римской осады, когда он разработал метательные машины. Однако римлянам все же удалось взять Сиракузы, при этом Архимеда убили. Более всего талант Архимеда выразился в математике. Так за всю биографию Архимед выполнил множество исследований в области алгебры, геометрии, арифметики. Он предложил более универсальный метод для вычисления площадей различных фигур. Его идеи позже были положены в основу теории интегрального исчисления. Также Архимед прекрасно проявил себя в механике (усовершенствовал механизм рычага, написал несколько книг), в астрономии (создал планетарий). Николай Иванович Лобачевский (1792 - 1856) – математик, преподаватель, ректор Казанского Императорского университета.
Родился Николай Лобачевский 20 ноября 1793 года в Нижегородской губернии, а в 1800 году переехал в Казань. Образование в биографии Лобачевского было получено в казанской гимназии, которую он окончил в 1807 году. Затем он поступил в Императорский университет Казани. Николай хорошо учился, специализировался на математике и физике, так что в итоге получил красный диплом магистра по данной специальности. В 1814 году, оставаясь в университете, занял должность адъюнкта, а позже – профессора. Как преподаватель математики, астрономии, физики, Лобачевский высоко ценился в университете. А в 1819 году стал деканом своего физико-математического факультета. В 1827 году биография Лобачевского стала известна как ректора Казанского университета. Эту должность он занимал до 1846. Так что кроме чтения лекций Николай Иванович решает насущные проблемы учебного заведения. Также Лобачевский занимается математическими теориями, развивает неевклидову геометрию - гиперболическую. В алгебре Лобачевским был разработан способ приближенного решения уравнений. Также им было получено несколько теорем в математическом анализе. В 1846 году отстранен от должности ректора университета Министерством. Вскоре в биографии Лобачевского наступил сложный период – здоровье ухудшалось, а все состояние было продано из-за долгов. В 1856 году великий математик умирает. В 1895 году создана премия (медаль Лобачевского), позже его именем называют улицы, библиотеки и даже кратер на Луне.http://all-biography.ru/category/science/tochnye-nauki СОФЬЯ ВАСИЛЬЕВНА КОВАЛЕВСКАЯ (1850-1891)
Первая русская женщина-математик С. В. Ковалевская родилась в Москве в богатой семье генерал-лейтенанта артиллерии в отставке Корвин-Круковского. Девочка росла разносторонне способной, но особенно ее увлекала математика. Ее первое знакомство с математикой произошло, когда ей было 8 лет. Для оклейки комнат не хватило обоев, и стены комнаты маленькой Сони оклеили листами лекций М. В. Остроградского по математическому анализу. С. В, Ковалевская вспомнила, что «от долгого ежедневного созерцания внешний вид многих из формул так и врезался в моей памяти...» С 15 лет она начала систематически изучать курс высшей математики. В то время в России женщинам было запрещено учиться в университетах и высших школах, и, чтобы уехать за границу и получить там высшее образование, С. В. Ковалевская вступила в фиктивный брак с молодым ученым-биологом В. О. Ковалевским (со временем этот брак стал фактическим). В 1869 г. молодые супруги уезжают в Германию, Ковалевская посещает лекции крупнейших ученых, а с 1870г. она добивается права заниматься под руководством немецкого ученого К. Вейерштрасса. Занятия носили частный характер, так как и в Берлинский университет женщин не принимали. В 1874г. Вейерштрасс представляет три работы своей ученицы в Геттингенский университет для присуждения степени доктора философии, подчеркивая, что для получения степени достаточно любой из этих работ. Работа «К теории дифференциальных уравнений в частных производных» содержала доказательство решений таких уравнений. В наши дни эта важнейшая теорема о дифференциальных уравнениях называется теоремой Коши-Ковалевской. Другая работа содержала продолжение исследований Лапласа о структуре колец Сатурна, в третьей излагались труднейшие теоремы математического анализа. Степень была присуждена Ковалевской «с высшей похвалой». С дипломом доктора философии она возвращается в Петербург и почти на 6 лет оставляет занятия математикой. В это время начинается ее литературно-публицистическая деятельность. В 1880г. Ковалевская переезжает в Москву, но там ей не разрешили сдавать в университете магистерские экзамены. Не удалось ей получить также место профессора на Высших женских курсах в Париже. Только в 1883 г. она переезжает в Швецию и начинает работать в Стокгольмском университете, где через год становится профессором. В течение 8 лет она прочитала 12 курсов лекций. Годы работы в Стокгольмском университете - период расцвета ее научной и литературной деятельности. В 1888г. Ковалевская написала работу «Задача о вращении твердого тела вокруг неподвижной точки», присоединив к двум движениям гироскопа, открытым Л. Эйлером и Ж. Лагранжем, еще одно. За эту работу ей была присуждена премия Парижской академии наук - премия Бордена, причем сумма премии была увеличена ввиду высокого качества работы. Через год по настоянию П. Л. Чебышева и других русских математиков Петербургская академия наук избрала Ковалевскую своим членом-корреспондентом. Предварительно для этого было принято специальное постановление о присуждении женщинам академических званий. С. В. Ковалевская мечтала о научной работе в России, но ее мечта не сбылась, в 1891 г. она умерла в Стокгольме. АНДРЕЙ НИКОЛАЕВИЧ КОЛМОГОРОВ (1903-1987)
Он рано начал проявлять разнообразные интересы. Учась в московской гимназии, Колмогоров увлекался биологией, физикой, историей. В 14 лет самостоятельно по энциклопедии стал изучать высшую математику. Вся жизнь и деятельность А.Н. Колмогорова была неразрывно связана с Московским университетом. В университете молодой ученый примкнул к школе Н. Н. Лузина. В 20-е гг. лузинская школа переживала пору своего расцвета, активно работали П. С. Александров, Д. Е. Меньшов, Л. А. Люстерник. В возрасте 19 лет Колмогоров сделал крупное научное открытие построил всюду расходящийся тригонометрический ряд. Его имя становится известным в научном мире. Занятия теорией множеств и тригонометрическими рядами пробудили у А. Н. Колмогорова интерес к теории вероятностей. Его книга «Основные понятия теории вероятностей» (1936), где была построена аксиоматика теории вероятностей, принадлежит к числу классических трудов в этой области науки. А. Н. Колмогоров был одним из создателей теории случайных процессов. Ученому принадлежат фундаментальные научные открытия в классической механике, где после исследований И. Ньютона и П. Лапласа он сделал радикальный прорыв в решении основной проблемы динамики, касающейся устойчивости Солнечной системы. В гидродинамике (теории турбулентности) А. Н. Колмогорову принадлежат достижения, имеющие характер открытия законов природы. В 1956-1957 гг. ученый предпринял атаку на 13-ю проблему Гильберта, приведшую к ее полному решению (результат был получен учеником А.Н. Колмогорова В. И. Арнольдом) и к дальнейшему развитию проблематики. А. Н. Колмогоров обогатил науку во многих других областях: в математической логике, в топологии, математической статистике, функциональном анализе, теории дифференциальных уравнений и динамических систем, теории информации, занимался применением математических методов в теории стрельбы, лингвистике, биологии. В конце жизни А. Н. Колмогоров сделал попытку вскрыть самую сущность понятий «порядок» и «хаос», показать, как хаотические процессы, воспринимаемые нами как случайные, возникают из детерминированных, но сложно устроенных явлений. Так возникла его концепция случайности как алгоритмической сложности. В последние годы своей жизни ученый принимал деятельное участие в разработке вопросов математического образования в средней школе и университетах, внес огромный вклад в дело просвещения. Многие крупнейшие академии и университеты мира избрали А. Н. Колмогорова в число своих членов, ему были присуждены Государственная (1941) и Ленинская (1965) премии, премии АН СССР им. П. Л. Чебышева и Н. И. Лобачевского, Международные премии Вольфганга (1963) и Вольфа (1981). Ученый удостоен звания Героя Социалистического Труда, награжден 7 орденами Ленина, орденами Трудового Красного Знамени и Октябрьской Революции, медалями. А. Н. Колмогоров был неповторимой и многогранной личностью. Необыкновенная сила его разума, широта его культурных интересов, неустанное стремление к истине, благородство и бескорыстие его помыслов оказывали благотворное воздействие на всех, кто его знал. |
|